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Overview

Modern Fluid Mechanics is based on the Navier Stokes equations formulated
nearly 200 years ago.  These are non-linear, tightly-coupled second order partial
differential equations forming a deterministic system to which analytical
solutions exist in only a few special idealised cases - not in the real world.

The field of Chaos Theory has shown that all physical systems previously
thought to be deterministic in fact have unpredictability built into their very
nature due to the unavoidable non-linearity they contain.  The mathematical
models of classical mechanics are idealised approximations.  In reality, absolute
prediction of the outcome is not possible - only the probability of an outcome.

This article gives a brief overview of some of Chaos Theory and how we see it
applies to both Fluid Mechanics and Computational Fluid Mechanics, with a
view to how these disciplines could be re-thought to facilitate technical advance
in aerospace and related fields.

Introduction

The Navier Stokes Equations are derived from Newton's Laws applied to the
motion of a "fluid particle" usually using a control volume approach.  They are
non-linear, tightly-coupled second order partial differential equations to which
no analytical solution is known to exist - in other words, they cannot actually be
solved.  They are tightly coupled since all the variables are mutually
interdependent -  any change in a property of the flow field in a part of the
domain has an effect on the rest of the domain which in turn affects the initial
source and so on:  the whole domain is subject to continuous non-linear
feedback.

Thinking about it logically, if the effect of a change is to change the very source of
that change our current mathematical formulations cannot analyse such a

situation.  We are in effect trying to analyse 
∂x

∂x
 since the subsequent change in x

is a function of the original change in x.

The non-linearity of the Navier Stokes Equations means they form a
fundamentally unpredictable system which can not be predicted with complete
certainty.

The current mainstream approach to Fluid Mechanics and CFD (in the practical
arena of industrial application) will remain limited until it integrates the
findings of Chaos Theory which have been developing rapidly since the 1950s.
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Chaos Theory

Chaos Theory can be defined as follows:

"The study of unstable aperiodic behaviour in deterministic non-linear dynamical
systems"

"The ability of simple models, without in-built random behaviour, to generate highly
irregular behaviour".

This means that a deterministic dynamical system can in fact generate aperiodic
disordered behaviour:  that is behaviour with a hidden implicit order.

Lack of predictability is inherent in all deterministic feedback systems.

"A dynamicist would believe that to write down a system's equations is to
understand the system.  But because of the (little bits of) non-linearity in these
equations, a dynamicist would find himself helpless to answer the easiest
practical questions about the future of the system1".

Classical mechanics and dynamics still believes in determinism, expressed most
famously by Laplace:

"Give me the past and present co-ordinates of any system and I will tell you its
future".

Determinism has at its heart the classical physics idea of a definite trajectory -
applied to a particle.

The mathematical model or concept of the definite particle trajectory is in fact of
limited usefulness and must be replaced with the broader quantum mechanical
concept of probability.

A deterministic system is one that is stable, predictable and completely knowable.

However, in reality deterministic systems can give rise to unstable, aperiodic,
apparently random behaviour.

Therefore, the "deterministic" system defined by the non-linear Navier Stokes
Equations will produce unstable, aperiodic, unpredictable, irregular behaviour.

This fact lies at the  heart of the difficulties with modern Fluid Mechanics and
CFD.

1Chaos, James Gleick, Heinemann 1988, P44
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Example of Chaos

The Pendulum

The equation of motion for the pendulum is to be found in any basic mechanics
textbook.

T = 2π l

g

The pendulum is one of the simplest dynamical systems and its properties have
been exhaustively investigated  Millions of students have learned this equation
and the concomitant "fact" stated by Galileo that the period is independent of the
angle of swing or amplitude.  However, the above equation is incorrect.

The changing angle of motion of the weight causes non-linearity in the
equations, meaning the motion cannot be predicted.  At small amplitudes, the
error is small but still measurable.

As another example, the motion of a swing being pushed in the playground
cannot be predicted.  It is a damped/ driven oscillator which can give rise to
erratic motion that never repeats itself.

The "noise" in the data from a REAL EXPERIMENT done with a pendulum -
where the data does not lie perfectly on a straight line or quadratic curve - is not
experimental error, but the result of the non-linearity and chaos inherent in all
real systems.

Galileo's equation is an idealised simplification of reality - an artificial thought
experiment which does not in fact reflect reality.

Modern mechanics is still based on these idealised approximations that the early
scientists developed between the Renaissance and the twentieth century.

However, even though these systems can give rise to unpredictable behaviour,
there is still frequently pattern and order within the unpredictability - such as the
vortices in a turbulent flow.  The study of these patterns has given rise to the
label of complexity.
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Iteration

"Modern computing allows scientists to perform computations that were
unthinkable even 50 years ago.  In massive computations, it is often true that a
detailed and honest error propagation analysis is beyond current possibilities and
this has led to a very dangerous trend.  Many scientists exhibit a growing
tendency to develop an almost insane amount of confidence in the power and
correctness of computers."

Chaos and Fractals, Peitgen, Jurgens, Saupe

One of the most important findings of Chaos research is the so called Butterfly
Effect or Sensitive Dependence on Initial Conditions.  This is accredited to the
meteorologist Edward Lorenz2.  Lorenz discovered that minute differences in the
starting or initial conditions of his differential equation model of the atmosphere
led to completely different results.  The Lorenz Experiment proved that in an
iterative computer process, no matter how small a deviation there is in the
starting values we choose for a computer simulation, the errors will accumulate
so rapidly that after relatively few steps the computer prediction is worthless.

In trying to model real systems, the difficulties are even greater since it means we
can never measure reality accurately enough:  no matter how precise our
observations, the initial difference between those measurements and reality will
quickly lead to unpredictable divergence between the model and reality.

Consider for instance the quadratic iterator pn+1 = pn+rpn(1-pn) with the constant r
= 3 and p0 = 0.01.  The result of evaluating the expression is then fed back into the
expression as p1.

Peitgen, Jürgens and Saupe3 shows that with two different calculators, one
evaluating to 10 decimal places and one to 12, after 35 iterations a significant
difference starts to appear between the two outputs which then rapidly escalates.
This is the unavoidable consequence of finite accuracy digital mathematics and
computers.

Step CASIO HP
1 0.0397 0.0397
2 0.15407173 0.15407173
3 0.5450726260 0.545072626044
4 1.288978001 1.28897800119
5 0.1715191421 0.171519142100
10 0.7229143012 0.722914301711
15 1.270261775 1.27026178116
20 0.5965292447 0.596528770927
30 0.3742092321 0.374647695060

2Deterministic Nonperiodic Flow, 1963
3Chaos and Fractals, 1992, Springer Verlag, P49
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35 0.9233215064 0.908845072341
40 0.0021143643 0.143971503996
50 0.0036616295 0.225758993390

After 35 iterations the two machines diverge and their results bear no
resemblance to each other.   Comparing the CASIO and the HP, the natural
tendency is to believe the HP more because it operates to more decimal places.
But if we used another machine, say with 14 or 20 decimal places, the same
problem would repeat itself with some delay and after maybe 50 iterations we
would see divergence between the HP and the new machine - and so on.

Therefore the addition of more decimal places only delays the onset of "chaos" -
or unstable behaviour.

Peitgen, Jürgens and Saupe then go on to show what happens if we change the
way the expression is evaluated.

p+rp(1-p) can be rewritten as (1+r)p -rp2.

These two different formulations of the same quadratic expression are not
equivalent.  On the same calculator, there is a slight difference after 12 iterations
and after 35 iterations again, the differences start to become enormous:  it is no
longer possible to tell which is the "correct" answer.

Therefore not only do iterative numerical solutions suffer from the limitations
of finite accuracy digital computers but even different mathematical
formulations of the same problem are not computationally equivalent and will
diverge.

Another famous example is the iteration of the expression xnext = rx(1-x), used by
the biologist Robert May to model a fish population.

The parameter r represents the rate of growth of the population.

As the parameter is increased, the final population value converges to a higher
value too, reaching a final population of x = 0.692 at r = 2.7.

As r is increased further, x does not converge to a final value but oscillates
between two final values; as r increases still further, this doubles again to 4
values and then doubles again  and finally becomes completely chaotic with no
convergence -  but then new cycles appear again in the midst of this.
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1 4

xn

r

Final State Diagram for the Logistic Operator xnext = rx(1-x) for 1 < r < 4

This bifurcation of the long term behaviour of the system to no longer converge
on one fixed final state but to oscillate between 2, then 4, then 16 etc final states is
called period doubling.  This then gives way to oscillation between a myriad of
states but with certain order re-appearing within the oscillations.

Therefore, in addition to the inability of the digital computer to carry out an
accurate iteration due to the propagation of errors, unstable behaviour is built
into the very nature of the non-linear mathematical model.

Most forces in real life are non-linear.

In addition, feedback is also common in real life systems, like fluid motion.  The
use of the description "tightly coupled" for the Navier Stokes equations  means a
change in any part of the domain propagates and has an effect back on the part
that changed.  This Non-linear feedback is why no analytical solutions exist.

It has been proved (Feigenbaum) that chaos is a universal property of non-linear
feedback systems.

"Somewhere, the business of writing down partial differential equations is not to
have done the work on the problem4".

It has been found that unpredictability and uncertainty is the rule in nature
while predictability is an idealised over simplification.

4Feigenbaum in Chaos, James Gleick, P187.
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The Strange Attractor

The so called Strange Attractor can be said to be the trajectory of the long term
behaviour of a dynamical system.

One can imagine that it is a visual representation of the hidden forces that create
order in a non-linear system within the unstable, unpredictable disorder.

All non linear systems have these attractors.  For a simple pendulum the
attractor is a point - where the pendulum comes to rest.  For the weather system
modelled by Edward Lorenz, the attractor takes the form of the famous
"butterfly" of two intersecting loops.

The point we wish to make is simply that in a system of simultaneous differential
equations, there is a hidden order with a fractal structure that is an inherent feature
of that system of equations, independent of the physical systems they are
modelling.

For instance Otto Rössler5  investigated the following system of differential
equations:

∂x

∂t
= −(y + z)

∂y

∂t
= x + ay

∂z

∂t
= b + xz− cz

where a, b, c are constants

The only non-linearity is the xz term in the third equation:  yet a plot of the
trajectory (x,y,z) of the numerical integration of this set of equations shows that
for certain parameter values, the solution does not converge onto a single final
result but onto a complex folded loop.

 Rössler Attractor

5An Equation for Continuous Chaos, Otto E Rössler, Phys. Lett 57A (1976)



Observations on the Application of Chaos Theory to Fluid Mechanics

9 © Meridian International Research, 2003

Computational Fluid Dynamics

CFD is concerned with producing a numerical analogue of the defining partial
differential equations of fluid motion.  This process is called numerical
discretisation.

There are 3 major approaches:

1. The Finite Difference Method
2. The Finite Element Method
3. The Finite Volume Method

With the Finite Difference method for instance, we ignore all terms of the third
order or higher in the Taylor Series approximation.  So right from the beginning,
a numerical approximation is introduced and from sensitive dependence on
initial conditions, this error can grow as iteration proceeds, producing a different
result each time.

Techniques such as von Neumann stability analysis are used to study the stability
of these linear difference equations (without taking into account Chaos).  But for
example even with the Euler Explicit Form of the simplest one dimensional
wave equation

∂u

∂t




 + c

∂u

∂x




 = 0

the von Neumann stability analysis shows that this equation leads to an unstable
solution no matter what the value of the time step ∆t.  It is unconditionally
unstable.

CFD seems to be largely concerned with the design of mathematical tricks to
overcome these computational problems.  Anderson6 shows the Lax method of

therefore replacing the time derivative 
∂u

∂t
 with a first order difference "where

u(t) is represented by an average value between grid points i+1 and i-1, i.e.

u(t) = ui +1
n − ui −1

n

2

But this is actually a first order spatial difference u(x) calculated from the average
value of u at spatial grid points i+1 and i-1 at the same time step n.

The average value of u with respect to time can only be calculated as a first order
difference at one spatial grid point at successive time steps n and n+1, i.e.

6Computational Fluid Dynamics, JD Anderson, McGraw Hill 1995, P162
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u(t) = ui
n+1 − ui

n−1

2

So the Lax method to develop a Courant number is (in this taught example at
any rate) based on a dubious foundation.

Error analysis also tends to assume that errors will follow a certain form,
normally assumed to be exponential.  Not only are we trying to model the
underlying physical reality imperfectly with idealised non-linear PDEs, we then
try to model the errors in their numerical solution with another mathematical
(exponential) model.  Exponential error propagation can be considered to indicate
sensitive dependence on initial conditions.

Peitgen, Jurgens and Saupe state:7

"The relation of the original differential equation to its numerical approximation
is very delicate - the stability conditions show that.  Changing over to a discrete
approximation may change the nature of a problem significantly, a fact which has
only entered the consciousness of numerical analysts quite recently.  This is
another merit of chaos theory".

To start any CFD simulation, the user has to specify the Initial Conditions and
the Boundary Conditions.  Therefore a major assumption is introduced right at
the beginning that we know what those conditions are.

In fact we know from sensitive dependence, that even the smallest variation in
the data for the initial conditions will cause huge differences in the predicted
results:  but it is impossible to specify the initial conditions because infinite
accuracy is required and the data is always uncertain.

No matter how fine the grid, uncertainty will always come into play.

Convergence & Stability

Convergence is the ability of a set of numerical equations to represent the
analytical solution if such a solution exists.

If the numerical solution tends to the analytical solution as the grid spacing tends
to zero, the numerical and analytical solutions converge.

This process is stable if during convergence the errors do not swamp the results.

Now, there are no analytical solutions to the Navier Stokes equations, except for
a few idealised situations.  Therefore convergence in CFD terms has come to
mean whether the iterative solver tends towards a particular value:  the user has
to  decide if that value is a realistic result and a valid solution.  Given the

7Chaos and Fractals, P683
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presence of a Strange Attractor in all non-linear dynamic systems and different
final states, bifurcations and period doublings inherent in this type of process,
whether the solver converges or not is meaningless.  It is itself a process subject
to the hidden laws of Chaos.

The fact that ∆t in the explicit formulation of the finite difference method has to
be sufficiently small to prevent the process becoming unstable - what does that
say about the fundamental validity of the approach?  It is not a UNIVERSAL
application.

In physical terms one can see that there is an inherent timescale in which fluid
interactions take place and create their effects on say an immersed body.  What
are these timescales and where do they come from?

One can use the implicit formulation instead (just as we formulated the
quadratic iterator in two different ways).  Chaos has shown that the implicit and
explicit formulations are not numerically and computationally equivalent.  The
iterative methods required to solve the numerical equations also require an
initial guess to be made to the solution, which is not an independent scientific
method.

It is well known that even if a converged numerical solution is found to a Taylor
Series approximation of a function, we do not know what function has
converged on that point.

All the time, the CFD user has to know what the results should be roughly, to
determine if the computed result is realistic or not.  This is not real simulation
but simply "copying" nature and shows the mathematical models and numerical
approximations of them are seriously flawed.

"The Navier Stokes equations are particularly difficult to discretise and solve
using numerical techniques".  Indeed - because they have no analytical solutions.
Because they are complex non-linear feedback systems that cannot be solved
mathematically and indeed are based on a flawed view of fluids and Newtonian
Motion to start with.

Discretisation tries to linearise these non-linear partial differential equations to
create simultaneous numerical equations which are hopefully more amenable to
solution.

"The non-linearity of the problems forces the use of an iterative solution - we
cannot use a direct tridiagonal matrix method for instance.  Because we have to
then find a solution to those numerical equations that is both converged and
resolves the non-linearity."  CT Shaw, Understanding Fluid Mechanics

Therefore we try to use simplified approximations.  It might give us some useful
results - or it might not represent what is really going to happen with a real
aircraft, ship or car at all.  The equations may converge to several oscillating
solutions or to a complex aperiodic state - all of these are a correct answer.
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Which reflects "reality" - a reality which itself displays the same unpredictable
bifurcations and oscillations?

If we completely rely on this approach and the Cartesian mental fixation with
finding the "one right answer" - as is increasingly the case in modern
engineering design with digital computer modelling tools - a very dangerous
trend will develop.

For example:  a dangerous resonant swing was engendered in the new
Millennium Footbridge over the River Thames in London opened in 2000.  The
bridge had to be closed and modified, because the "random" motion of
pedestrians set up a resonance which then in turn forced their walking into a
pattern in phase with that resonance which then amplified the effect and so on:
a complex non-linear feedback system that could have destroyed the bridge.  The
bridge was designed exclusively  with computer modelling techniques which did
not predict this.  Clearly there was more "order" in the initial "random" walking
of the pedestrians than the model took into account: something someone
familiar with Chaos Theory would have foreseen since hidden order is the rule
in Nature.

CFD - Conclusion

The current approach to CFD has its uses.  It has been refined empirically to a
point where it can now produce models that are a reasonable and useful
reflection of reality for well known and accepted geometries and flow regimes.

However, this is the fundamental drawback:  it can only predict what is already
known.  If the user does not know what result is "reasonable" or "what to expect"
he does not know whether the result is useful or not.  To get the solving process
to converge the user often has to input the likely end result beforehand.  This can
not be described as a rigorous or really even an acceptable scientific method.  It is
more akin to following a kitchen recipe than carrying out a scientific
experimental procedure.

Within the domain of what we already know about fluid behaviour -
experimentally - it provides a useful tool for technicians to apply current known
techniques.  It may not provide accurate guidance if asked to explore outside the
current known parameters and worse could lead to our knowledge and
investigative spirit stagnating.

To quote Professor Charles L Fefferman, Princeton University, Dept of
Mathematics:

"There are many fascinating problems and conjectures about the behaviour of
solutions of the Euler and Navier Stokes equations.  Since we do not know
whether these solutions exist, our understanding is at a very primitive level.
Standard methods from PDE appear inadequate to settle the problem.  Instead, we
probably need some deep new ideas".
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Libchaber's Experiment - Helium in A Small Box

In 1977 the French physicist Albert Libchaber set out to design an experiment to
investigate the onset of turbulence.

The apparatus consisted of a cuboid reservoir 1mm3 machined out of stainless
steel, filled with liquid helium.  Convection was produced in the helium by
heating the bottom of the box by one thousandth of a degree C.  This is the classic
system known as Rayleigh - Bénard convection.  The dimensions of the cell were
chosen to allow only two convection rolls to form.  The fluid was supposed to
rise in the middle, flow out to left and right and descend on the outer surfaces of
the cell.

However even this simplest of fluid dynamics experiments demonstrates the key
characteristics of chaos:  bifurcations and period doubling.

If even the most tightly controlled experiment of this nature still demonstrates
chaotic behaviour - that is complex unpredictable disorder with elements of
order - can current simulation approaches ever model complex real flows
without taking chaos into account?

"Computer simulations break reality into chunks:  as many as possible but always
too few.  No computer today can completely simulate even so simple a system as
Libchaber's liquid helium cell.  A real world fluid, even in a stripped down
millimeter cell, has the potential for all the free motion of natural disorder".

Libchaber has stated:

"Computer simulations help to build intuition or refine calculations, but they do
not give birth to genuine discovery."8

8Chaos, James Gleick, P210
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Viscosity and Friction

In Mechanics and Dynamics, friction (of a motor car for instance driving on a
particular surface) cannot be assigned a constant since it depends on the speed of
the vehicle.  The friction is non-linear.  Classical mechanics does use a "co-
efficient of friction" but his is again a linear classical approximation.

Viscosity is friction for a fluid.  Viscosity is independent of the density of the
fluid.  The logical inconsistency of this fact that the viscosity of a particular gas is
independent of its density - i.e. of a variation in the number of molecules of gas
per unit volume when it is supposed to be the effect of those molecules sticking
onto an immersed body which creates friction drag - is not explained.  The fact
that viscosity is not independent of temperature is a further paradox.

The viscous drag on a body moving in a fluid depends on the square of its
velocity, where the viscosity or friction of the fluid is assumed to be a constant (at
a given temperature) in classical fluid mechanics.  However, in physical terms,
the friction or viscous drag exerted by the fluid on the body is due to some
inherent property of the fluid acting on the body, which is independent of the
velocity of that body:  it is simply that we can easily observe the velocity of the
body and the friction upon it and create a mathematical relationship, e.g. the
following well known sequence of equations for laminar shear stress, coefficient
of friction and friction drag:

τ 0 = kµ U0

x
Rex k=0.332 for the Blasius solution

Cf = τ 0

ρU0
2 / 2

Fs = Cf BLρU0
2

However, relying on these mathematical models  creates a tendency to forget the
physical mechanisms at work:  the friction drag observed is a non-linear complex
resultant interaction:  while it is understandable how the idea of a constant
viscosity was derived it is clear that the inherent property of a fluid which creates
friction drag is not a linear constant.

Viscosity is measured over a "linear" regime in a rotary viscometer for most
fluids.  It is defined as shear stress (of the fluid on a reference area) divided by rate
of shear strain.

A viscometer, or Taylor Couette Apparatus, consists of a fixed outer cylinder with
a rotating inner cylinder between which is a thin layer of fluid.  At low rotation
speeds, the fluid tracks the rotation and moves in a circle around the axis of
rotation.  This is the regime used to determine the coefficient of viscosity for
fluids.
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However, this velocity gradient is not linear.  The standard parabolic velocity
gradient of the boundary layer for laminar flow is of course not linear and shows
that the kinetic energy dissipated by the fluid is non-linear.  Viscosity is of course
defined in terms of the shear stress divided by rate of shear strain at the boundary
wall but this is a classical linear approximation.  The gradient is in fact not linear
and therefor the classical definition of viscosity as a "constant" for a fluid is an
approximation.

The current model of classifying flow into "different regimes" is scientifically
limiting.  Chaos Theory has shown that the onset of turbulence, instability and
complex motion in fluid flow cannot be predicted:  certain patterns appear but
they are not completely quantifiable or predictable.  Only probabilities can be
assigned.

Flow is a continuum, from the lowest to the highest velocities, with certain
general patterns mostly observed in certain general "speed regimes" but there is
no fundamental distinction between "laminar" and "turbulent" flow as taught by
classical fluid mechanics.  Therefore models which try to distinguish between
them are missing the point:  whatever it is that "tells" the fluid to change from a
highly ordered flow to a much more complex disordered flow, but which still
contains elements of aperiodic order, lies beyond the realm of mathematics.  It
lies in the implicit order behind the phenomena we observe.  This is where we
need to look to find solutions to our engineering problems.
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The Problem with Calculus

Differential Calculus is now 300 years old.  It is based on the concept of taking
smaller and smaller "steps" or changes to model in a linear way systems
represented by differential equations.

We are all familiar with the expression "as dx tends to 0".

Basic calculus at school and undergraduate level usually involves idealistic,
simplified mathematical models that differentiate or integrate nicely to definable
results.

However, the geometry of nature is fractal.  In fact, the universe itself is fractal
across all scales.

A well known example is the famous question:  "How Long is the Coastline of
Britain?"

The answer is: it depends on your scale of measurement.  The smaller your scale
of measurement, i.e. the smaller your dx, the longer the coastline.  Due to its
fractal nature, the length of the  coastline of Britain is in fact mathematically
infinite.  dx can never be made small enough to capture the "real" length of the
coastline.

Therefore, in dealing with the study of nature, which is what science and
engineering is, we are dealing with fractal phenomena.  Calculus cannot handle
this:  it can handle only standard finite definite geometry, not the real fractal
geometry of nature.  It is again an approximation, and that gap in knowledge of
the "initial conditions" or uncertainty will always lead to unpredictability in our
mathematical models.

Turbulence

It is well known now that turbulent flow is described not by superposition of
many modes or the buildup of frequencies (as postulated by Lev D. Landau in the
1930s) but by Strange Attractors.  Turbulence arrives in a sudden transition, not
in the continuos piling up of different frequencies.

Therefore there are inherent structures that distinguish turbulence from true
randomness:  turbulent flow is not completely random but subject to a force of
hidden implicit order which we have yet to fully identify.

Turbulence modelling in CFD takes no account of this hidden implicit order in
Nature which gives rise to ordered vortices, vortex rings and vortex streets
within even the most disordered turbulent systems.

The mathematician Benoit Mandelbrot who first brought the fractal
characteristics of nature to public attention argues that turbulence has fractal
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geometry, i.e. is self similar across different scales and could be modelled with a
fractal approach.

The famous paper published by Ruelle and Takens (On The Nature of
Turbulence, 1971) showed that the trajectories of fluid particles at the onset of
turbulent flow can be described by strange attractors which themselves have
fractal form.  Rather than using the NS Equations to model turbulence, they
proposed that just three independent motions cause all the complexities of
turbulence where x describes a fluid in turbulent motion as quasi-periodic
functions of time:

x(t) = f (ω1t,....,ωkt) y(t) = f (ω1t,.....,ωkt) z(t) = f (ω1t,.....,ωkt)

Much of the mathematics in this landmark paper is incorrect but its postulation
of the strange attractor was a watershed.
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Uncertainty

Science is now at last admitting that the last 300 years of classical physics is the
idealised approximation that it clearly is and not a determined set of absolute
Laws.

"We need a new formulation of the fundamental laws of physics.  Probability
plays a role in most sciences.  Still, the idea that probability is merely a state of
mind has survived.  We now have to go a step further and show how probability
enters the fundamental laws of physics, whether classical or quantum".9

The deterministic view of classical physics is that once the initial conditions are
known, everything that follows is automatically determined.  Nature is an
automaton.  All processes are time reversible.

This view is still the basis of Computational Fluid Dynamics.  CFD takes the
deterministic Navier Stokes Equations, discretises them and specifies the initial
and boundary conditions at all points in the domain of interest.

The whole finite difference/ finite element/ finite volume approach believes
that the state of any position in the domain, both in space and in time, then
follows automatically from this specified initial state of all the positions in the
domain.

We know that this is not true.  Therefore, we know that CFD is a highly
simplified and unrealistic approach.

Nature is Non-linear, complex, disordered and uncertain, giving rise to self
organisation.  Most of the "differential equations" used to mathematically model
nature do not have solutions and in any case are modelling the wrong thing
anyway.  They are idealised approximations, that are analytically unsolvable, are
themselves chaotic systems and are "solved" on computers using digital
techniques that are also subject to chaos!  Chaos upon chaos upon chaos!

There is no such thing as determinism.  There is only probability, uncertainty
and hidden order.

9The End of Certainty, Ilya Prigogine, Éditions Odile Jacob, 1996, P16
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Reversible vs Irreversible Processes

This section quotes extensively from "The End of Certainty" by the Nobel
Laureate Ilya Prigogine.

The 19th century left us with a dual heritage - that of a time reversible
deterministic universe and that of an evolutionary universe associated with
entropy.

Newton's Laws describe a time reversible universe.  According to classical
dynamics and mechanics, all processes are time reversible; it does not matter if
we change t for -t in the equations.

Thermodynamics deals specifically with irreversible time oriented processes,
such as radioactive decay or the effect of viscosity.  They have a direction in time
and are irreversible dissipative processes that are said to increase "entropy" while
reversible processes such as the motion of a frictionless pendulum are the same
in past and present: they are time symmetrical.

Nature involves both Time Reversible and Irreversible processes but irreversible
ones are the rule and reversible ones the exception:  reversible ones are
idealisations.

The distinction between time reversible and irreversible processes was
introduced through the concept of entropy associated with the so-called Second
Law of Thermodynamics.  According to this "law", irreversible processes produce
entropy while reversible ones do not.

However, according to the "fundamental laws of physics" there should be no
irreversible processes.  So we have two conflicting views of nature from the 19th
century.

Boltzmann's Probability based interpretation makes the macroscopic nature of
our observations responsible for the irreversibility we observe in reality.

He gave the example of two boxes connected by a valve, one at high and the
other at low pressure.  When the valve is opened, the pressure equalises,
irreversibly.  We do not see the pressure in one box or the other ever increase
and the other decrease again spontaneously.

Boltzmann said "If we could follow the individual motion of the molecules, we
would see a time reversible system in which each molecule follows the laws of
physics".

"Because we can only describe the number of molecules in each compartment,
we conclude the system evolves towards equilibrium - so irreversibility is not a
basic law of nature but merely a consequence of the approximate macroscopic
nature of our observations".
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Prigogine than also quotes from "The Quark and the Jaguar", in which it is
argued that because there are statistically so many more ways for the gas
molecules to order themselves in equilibrium rather than in a state of low and
high pressure, that is what we will tend to see.  It is argued that (theoretically) if
you continue to watch long enough, the two boxes will return to their initial
state spontaneously.

Therefore the explanation for irreversibility is that there are more ways for
disorder to occur than for higher degrees of order.  This implies that it is our own
ignorance, our "coarse graining" that leads to the Second Law of
Thermodynamics.  For Laplace's Demon, a well informed observer, the world
would appear totally time reversible.

Max Planck disagreed:  in his "Treatise on Thermodynamics" he wrote:

"It is absurd to assume the validity of the Second Law depends on the skill of the
physicist or chemist in observing or experimenting.  The law has nothing to do
with experiment:  it asserts that there exists in nature a quantity which always
changes in the same way in all natural processes.  The limitation of the law, if
any, must lie in the same province as its essential idea, in the Observed Nature
and not in the Observer."

The Laws of Physics as formulated in the traditional way describe an idealised,
stable world quite different from the unstable evolving world in which we live.
The main reason to discard the banalisation of irreversibility is that we can no
longer associate the arrow of time only with an increase in disorder.  Recent
developments in non-equilibrium physics and chemistry show that the arrow of
time is a source of order.

Take the following experiment, well known in the 19th century.

A simple Thermal Diffusion Experiment.  Two boxes are connected by a tube,
forming one interconnected volume.  The box contains a mixture of Hydrogen
and Nitrogen gas at the same temperature T.  One box is heated to temperature
T1 >T and the other cooled to temperature T2 <T.
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The system evolves to a steady state in which the Hydrogen is concentrated in
one box and the Nitrogen in the other.

So the entropy produced by the irreversible heat flow from one box to the other
leads to an ordering process.

(Therefore the Second "Law" of Thermodynamics is incorrect, since the natural
process has created increased order .)

In the world of Deterministic Chaos, Laplace's Demon can no longer predict the
future unless he knows the initial conditions with infinite precision.  Only then
can he continue to use a trajectory description.  But there is an even more
powerful instability that leads to the destruction of trajectories,  whatever the
precision of the initial description.  This form of instability applies to both
classical and quantum mechanics.

This instability is DIFFUSION.

For integrable systems where diffusive contributions are absent, we can come
back to a trajectory description but in general, the Laws of Dynamics have to be
formulated at the level of Probability Distributions.

"The basic question is therefore: in which situations can we expect the diffusive
terms to be observable?  When this is so, probability becomes a basic property of
nature.  This question, which involves defining the limits of the validity of
Newtonian Dynamics is nothing short of revolutionary.  For centuries,
trajectories have been considered the basic, primitive object of classical physics.
In contrast, we now consider them to be of limited validity for resonant systems."

(A resonant system is any system in classical mechanics of the periodic motions
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of different bodies.  In other words, most of classical mechanics is resonant).

For transient interactions (e.g. a beam of particles collides with an obstacle and
escapes) the diffusive terms are negligible.  But for persistent interactions (e.g. a
steady flow of particles falls onto an obstacle) they become dominant.

The appearance of the diffusive terms for persistent interactions means the
breakdown of the Newtonian as well as the orthodox quantum mechanical
descriptions.

Every theory that we have today is based on physical concepts that are then
expressed through mathematical idealisations.

We discover fluctuations, bifurcations and instabilities at all levels.  Stable
systems leading to certitudes are only idealisations.  The world is NOT made of
stable dynamical systems.
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Conclusion

Current approaches to numerical and analytical modelling of fluid flow are
seriously deficient.  They can only predict what is already known and cannot
model the real disordered but still ordered complexity of real processes.

It is clear that both real physical processes and the current digital computer
systems used to model them are both subject to hidden laws of nature which
cannot be expressed by Newtonian Dynamics.

Indeed, Newton's Second Law F=ma is defined for acceleration of a particle by a
force in a straight line.  However, there is no such thing as straight line motion
anywhere in the known universe.  Therefore F=ma is itself an idealised classical
approximation which from sensitive dependence on initial conditions will
inexorably lead to divergence between models based on this foundation and
reality.

Therefore we need a way of formulating fluid motion that is more realistic,
which captures the natural chaotic order and influences which affect all natural
non-linear processes.

Is such a formulation possible?

We believe that it is and here present our views on how to achieve the above
breakthrough.

Current mechanics models everything in terms of particles.  Most of fluid
mechanics is based on treatment of a fluid "particle" or element, though how
such a thing can be defined is never explained.  The very idea of taking the solid
matter concept of Shear Modulus and applying it to a fluid, where in fact a linear
"rate of shear strain" cannot exist and a fluid "particle" cannot be defined to
deform like the classical solid block, is logically flawed.  Quantum Theory proved
decades ago that tangible matter does not exist but is composed of wave fields, not
particles.

All of motion is in fact wave motion.  Matter is waves.  Motion is waves.
Thought is waves.  All is waves.

The universe is in fact holographic.  The appearance of matter is created by the
interference of waves:  matter is an interference pattern.  Hence the fractal nature
of Nature.  A holographic interference pattern is fractal.  Waves are fractal
because they are harmonic.  If the frequency of a wave is doubled the scale has
changed but the pattern is the same.  That is why the octave of a note sounds the
same as its subharmonic.  It has the same fractal pattern, just a different scale.
Our ear even emits sound which interferes with sound waves we hear - i.e.
hearing is a holographic interference process.  Artificial Holophonic Sound
recordings sound like a real life event happening right there by the listener, not a
recording coming out of the speakers.
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Most people are familiar with the three dimensional reality of holographic
images.

Therefore to create faithful engineering models - we need to create a dynamic
holographic wave modelling system that uses WAVES.  Not numerical
equations and artificial analogues of waves - that is like trying to smell a cup of
coffee from its photograph.  We need to use a harmonically scaled analogue of
the real wave system (the engineering artifact we want to build in its natural
environment where it will operate) using a wave modelling system that uses the
same waves on a smaller scale:  it will have to be on the same fractal scaling as
the "real" system, i.e. a subharmonic.  Otherwise, it will not give the same
results.  And even so, there will still be uncertainty in the results because that is
the nature of Nature.  But we can get as close as it is possible to get.


